COMBINATORICA Akadémiai Kiadó — Springer-Verlag

SYMMETRIC DESIGNS AND GEOMETROIDS

T. P. MCDONOUGH and V. C. MAVRON

Received July 30, 1986

A λ -set S in a symmetric $2-(v,k,\lambda)$ design Π is a subset which every block meets in 0, 1 or λ points such that for any point of S there is a unique block meeting S at that point only. Ovoids in three-dimensional projective spaces are examples of λ -se.s. It is shown that if Π has a λ -set then Π is a geometroid with $v=\lambda u^2+u+1$ and $k=\lambda u+1$, where $u \ge \lambda-1$. The cases when u is $\lambda-1$, λ and $\lambda+1$ are investigated and some open problems discussed.

1. Introduction

The motivation for this work came from an attempt to classify families of symmetric 2-designs. Many such families have been found in recent years by a variety of methods. The more general aim of this paper was to try a classification of some families by looking at those containing certain subsystems, called here λ -sets. It turns out that the families containing λ -sets are geometroids.

In the case of the design of the points and hyperplanes of a finite threedimensional projective space, a λ -set is an ovoid. More generally, λ -sets are special cases of what Sane et al. [8] call a (λ, s) -arc in a symmetric 2-design and what Calderbank and Kantor [2] call projective (n, k, h_1, h_2) sets in projective spaces.

After looking at general symmetric 2-designs which have λ -sets we consider in turn three families of geometroids and discuss the existence of designs having λ -sets in each family, and some open problems which arise from this.

For the basic design and geometric definitions and results used in this paper see Hughes and Piper [5] or Dembowski [3].

2. Parameters

Throughout this section Π denotes a symmetric $2-(v, k, \lambda)$ design which has a subset S of s points such that:

(i) $\lambda \geq 2$, $s \geq 1$;

(ii) $|S \cap B| \in \{0, 1, \lambda\}$ for any block B;

(iii) if $p \in S$, there is a unique block B such that $B \cap S = \{p\}$.

Such a subset S of the design Π is called a λ -set.

Note that the case $\lambda = 1$ has been excluded as it will not be of interest in the discussion which follows, for reasons which will become apparent.

Relative to the λ -set S, a block B will be called an *internal block*, tangent block or secant block if, respectively, it meets S in 0, 1 or λ points. It is clear from the definition that S has exactly s tangents.

Let the number of internal and secant blocks of S be α and β respectively. Then clearly $\alpha + \beta = v - s$. It is also clear that points of S together with the secant blocks form a $2 - (s, \lambda, \lambda)$ design with β blocks and "r" = k - 1.

Denote this $2-(s, \lambda, \lambda)$ design by Π_S .

The basic design parameter equations easily give $\lambda \beta = s(k-1)$ and $(k-1)(\lambda-1) = \lambda(s-1)$. Then using $\alpha + \beta = v - s$ and simplifying we find that:

(2.1)
$$s = 1 + (\lambda - 1)(k - 1)/\lambda = (\lambda k + 1 - k)/\lambda$$
$$\alpha = (k - 1)(k + \lambda - \lambda^2 - 1)/\lambda^2$$
$$\beta = (k - 1)(\lambda k + 1 - k)/\lambda^2.$$

It therefore follows that λ divides k-1 and hence that Π is a geometroid $G_u(\lambda)$ in the sense of Mullin [6], where $u=(k-1)/\lambda$.

It is also worth observing here that, in the terminology of Sane et al [8], S is a (λ, s) -arc; also that an arc of Assmus and van Lint [1] is a λ -set if and only if $\lambda = 2$.

(2.2) Lemma. Let p be a point of Π not in S and let α' , β' , γ' be, respectively, the number of internal, secant and tangent blocks on p. Then γ' is either 0 or λ .

If
$$\gamma'=0$$
, then $\alpha'=(k-1)/\lambda$ and $\beta'=s=(\lambda k+1-k)/\lambda$.
If $\gamma'=\lambda$, then $\alpha'=(k+\lambda-\lambda^2-1)/\lambda$ and $\beta'=s-1=(\lambda-1)(k-1)/\lambda$.

Proof. Clearly $\alpha' + \beta' + \gamma' = k$. Counting ordered pairs (q, B), where $p, q \in B, q \in S$, gives easily $\lambda \beta' + \gamma' = \lambda s = \lambda k + 1 - k$. Now since λ divides k - 1, then λ divides γ' . Hence either $\gamma' = 0$ or else $\gamma' \ge \lambda$.

Letting p vary over all points not in S, we get the following sums:

$$\sum \gamma' = s(k-1)$$

and

$$\sum \gamma'(\gamma'-1) = s(s-1)\lambda$$

from which, using (2.1), it is easily deduced that $\sum \gamma'(\gamma'-\lambda)=0$. Hence since for each p either $\gamma'=0$ or $\gamma' \ge \lambda$, it follows that if $\gamma' \ne 0$ then necessarily $\gamma'=\lambda$.

Finally, using the above equations and (2.1) the proof is readily completed.

We have shown in the above lemma that any point not on the λ -set S is on either 0 or λ tangent blocks.

Definition. A point p of Π is called an *internal point* or *secant point*, relative to S, according as the number of tangent blocks on p is 0 or λ .

The following lemma follows easily using the previous lemma.

(2.3) Lemma. In the dual symmetric design of Π , the tangent blocks of S form a λ -set whose tangent blocks are the points of S and whose internal (secant) blocks are the internal (secant) points of S.

Next we investigate the type of parameters, in certain cases, that Π may have and discuss the existence of such a design having a λ -set.

Let $u=(k-1)/\lambda$. Then Π is a symmetric $2-(\lambda u^2+u+1, \lambda u+1, \lambda)$ design and $s=\lambda u-u+1$, $\alpha=u(u+1-\lambda)$, $\beta=u(\lambda u-u+1)=us$. As mentioned earlier, Π has the parameters of a geometroid $G_n(\lambda)$.

Rajkundlia [7, p. 82] constructs examples of $G_{\mu}(\lambda)$ when both u and $\lambda u+1$

are prime powers. See also Shrikhande and Singhi [9] for the case $\lambda = u$.

Our interest here is not just with parameters but with the existence of geometroids with λ -sets. Since $\alpha \ge 0$ it follows that $\lambda - 1 \le u$. We shall proceed to examine, in turn, the parameter types when u is $\lambda - 1$, λ and $\lambda + 1$.

Type I: $u=\lambda-1$.

Here Π is a $2-(\lambda^3-2\lambda^2+2\lambda,\lambda^2-\lambda+1,\lambda)$ design with $s=\lambda^2-2\lambda+2, \alpha=0$

 $\beta = (\lambda - 1)(\lambda^2 - 2\lambda + 2)$. Thus every block meets S in either 1 or λ points.

In this case, the design Π_S is a $2-(\lambda^2-2\lambda+2,\lambda,\lambda)$ design. It is interesting to note that any inversive plane of order $\lambda-1$ will have these parameters as a 2-design. Inversive planes of order n are known to exist when n is a prime power (see, for example, [3] or [5]).

Non-degenerate quadrics of index one in the projective geometry PG(3, q)are examples of λ -sets. A hyperplane meeting such a quadric in one point is the tangent hyperplane at that point. The points and hyperplanes of PG(3,q) form a symmetric $2-(q^3+q^2+q+1,q^2+q+1,q+1)$ design which is of Type I with $\lambda = q + 1$. Denote the design by P(3, q).

By a theorem of Calderbank and Kantor [2, Theorem 12.6], a λ -set in P(3, q)must be an ovoid and, if q is odd, the ovoid is a quadric in PG(3, q). (See Dembowski [3] for information on ovoids.) Ebert [4, Theorem 3] has proved that the points of

P(3,q), q>2, admit a partition by ovoids.

Observe that the designs Π_S in the P(3, q) example are all inversive planes and hence 3-designs. We do not know of any other Type I designs. An interesting question is whether a Type I design which admits a partition by λ -sets is necessarily isomorphic to some P(3,q) or, if not, then need the designs Π_S be 3-designs?

Type II: $u=\lambda$.

II is now a symmetric $2-(\lambda^3+\lambda+1,\lambda^2+1,\lambda)$ design with $s=\lambda^2-\lambda+1$, $\alpha = \lambda$, $\beta = \lambda(\lambda^2 - \lambda + 1)$ and Π_S is a $2 - (\lambda^2 - \lambda + 1, \lambda, \lambda)$ design. Note that Π_S has the parameters of the sum of λ projective planes of order $\lambda-1$.

Let p be any point of Π not in S. Then, with the notation of (2.2), we have that either: (i) $\alpha' = \lambda$, $\beta' = \lambda^2 - \lambda + 1$, $\gamma' = 0$ or (ii) $\alpha' = 1$, $\beta' = \lambda^2 - \lambda$, $\gamma' = \lambda$. In (i), p is an internal point and in (ii) it is a secant point.

From the dual of (2.2) it follows that any internal block is on exactly λ internal points and therefore contains all the internal points.

Designs with Type II parameters are constructed by Shrikhande and Singhi [9] and also by Rajkundlia [7, p. 84] when both $\lambda-1$ and $\lambda^2-\lambda+1$ are prime powers. It is not difficult to see that the designs in [7] have λ -sets S for which Π_S is a sum of projective planes of order $\lambda-1$.

Here we shall describe a construction, under a hypothesis similar to those above, by first constructing an interesting self-dual 1-design with special block intersection properties, whose automorphism group is transitive. This design is then extended to a symmetric 2-design. Our construction of the symmetric 2-designs will show how they are composed from other designs and that they are self-dual, The method requires $\lambda-1$ to be the order of a projective plane and $\lambda^2-\lambda+1$ must be a prime power. Whether or not our construction gives designs isomorphic to those of [7] or [9] is unclear. Moreover the question of self-duality is not pursued in these papers.

First we describe the construction of the 1-design in a more general form than will be required.

- (2.4) Theorem. Let q be a prime power and t, n positive integers such that q-1=tn. Then there exist a symmetric 1-(qt,q-1,q-1) design Γ with the following properties.
 - (i) Γ is self-dual and its automorphism group is transitive.
 - (ii) Any two distinct blocks meet in either 0, n-1 or n points.
- (iii) The blocks of Γ may be partitioned into q subsets each consisting of t disjoint blocks.
- (iv) There is a partition of the blocks of Γ into t subsets of size q such that any pair of blocks from the same subset meet in n-1 points.

Proof. Let H be the multiplicative group and A the additive group of GF(q). Let K be the unique subgroup of H of order n and let L be the quotient group H/K of order t. Choose any $a \in H$.

Then the points of Γ are the pairs (x, y), where $x \in A$, $y \in L$. Given $v \in A$, $w \in L$, a block, denoted by [v, w] is defined to be the following point subset of Γ :

$$\{(x, y)|a(x-v)\in y^{-1}w\}.$$

The mapping $(x, y) \rightarrow [-x, y^{-1}]$ is easily seen to induce an isomorphism from Γ onto its dual. Hence Γ is self-dual.

If $e \in A$ and $f \in L$, it is readily verified that the mapping $(x, y) \rightarrow (x+e, fy)$ induces an automorphism of Γ and that these automorphisms form a group which is transitive on points (and on blocks). This proves (i).

Consider a block [v, w]. A point $(x, y) \in [v, w]$ if and only if $a(x-v) \in y^{-1}w$. The latter condition implies $x \neq v$. Choose any $x \in A$, $x \neq v$. Then there is a unique $y \in L$ such that $a(x-v) \in y^{-1}w$. So [v, w] is on exactly |A|-1=q-1 points. Dually every point is on q-1 blocks. Thus Γ is a design with the required parameters.

Let $v \in A$ and consider the t blocks [v, w], $w \in L$. If $w_1, w_2 \in L$ and (x, y) is in both $[v, w_1]$ and $[v, w_2]$, then a(x-v) is in both the cosets $y^{-1}w_1$, $y^{-1}w_2$; so these cosets are equal and hence $w_1 = w_2$. This proves (iii).

Now consider blocks [v, w], [v', w'] where $v \neq v'$. We show that they meet in n-1 points if w=w' and in n points otherwise. Using the properties of the above automorphism, it is clear that we may assume [v', w'] = [0, 1], where $v \neq 0$ (since $v \neq v'$).

A point (x, y) is in both [v, w] and [0, 1] if and only if a(x-v) is in $y^{-1}w$ and ax is in y^{-1} ; that is, ax is in y^{-1} (implying $x\neq 0$) and $1-x^{-1}v$ is in w. Now if $h\in w$, then $1-x^{-1}v=h$, where $x\neq 0$, if and only if $h\neq 1$ and $x=v(1-h)^{-1}$.

Thus the number of points in which the given blocks meet is the number of elements $\neq 1$ in the coset w, which is |K|-1=n-1 if $1 \in w$ (that is, w=1) and is n otherwise.

Thus, given $w \in L$, the q blocks [v, w], $v \in A$, form a subset with the properties given in (iv). This proves (ii) and (iv).

Now we show how a symmetric 2-design may be constructed using (2.4).

(2.5) Theorem. If $\lambda^2 - \lambda + 1$ is a prime power and there exists a projective plane of order $\lambda-1$, then there exists a symmetric $2-(\lambda^3+\lambda+1,\lambda^2+1,\lambda)$ design which is self-dual and has a λ -set.

Proof. Using (2.4) and its notation construct a $1-(\lambda^3-\lambda^2+\lambda,\lambda^2-\lambda,\lambda^2-\lambda)$ design Γ taking $q = \lambda^2 - \lambda + 1 = |A|$, $t = \lambda = |L|$ and $n = \lambda - 1$.

We extend Γ to an incidence structure Π by adjoining new points and blocks and extending blocks of Γ .

Let \sum be a projective plane of order $\lambda-1$. Let the point set and line set of Σ be, respectively, $\{p_x|x\in A\}$ and $\{B_x|x\in A\}$. The points of Π are those of Γ and the new points labelled (z), where $z\in A\cup L$. The blocks of Π are those of Γ and the new blocks labelled [z], $z \in A \cup L$. Incidences in Π are defined as follows:

- (i) $(x, y) \in [v, w]$ if $a(x-v) \in y^{-1}w$. That is, incidences are inherited from Γ . $(x, v \in A; y, w \in L.)$
 - (ii) $(x, y) \in [v]$ if $p_v \in B_x$ in \sum . $(x, v \in A; y \in L)$ (iii) $(x, y) \in [y]$. $(x \in A; y \in L)$

 - (iv) $(x) \in [v, w]$ if $p_x \in B_v$ in $\sum (x, v \in A; w \in L)$
 - (v) $(x) \in [x]$. $(x \in A \cup L)$
 - (vi) $(y) \in [w]$. $(y, w \in L$.)
 - (vii) $(y) \in [x, y]$. $(x \in A; y \in L)$

Evidently Π has $(\lambda^3 - \lambda^2 + \lambda) + (\lambda^2 - \lambda + 1) + \lambda = \lambda^2 + \lambda + 1$ points and the same number of blocks. Next we show that every block is on exactly $\lambda^2 + 1$ points.

Let $v \in A$, $w \in L$. The block [v, w] is on $\lambda^2 - \lambda$ points of Γ and contains (w)and also (x), where x is any of the elements $x \in A$ such that p_x is on B_v in \sum ; a total of $\lambda^2 + 1$ points.

The block [v], $v \in A$, is on the $\lambda |L| = \lambda^2$ points (x, y), where $y \in L$ and x is such that $p_v \in B_x$ in Σ ; and also on the point (v). Again a total of $\lambda^2 + 1$ points.

Next we show that any two distinct blocks meet in λ points. Consider two distinct blocks [v, w], [v', w'].

Case 1: (v=v'). The two blocks meet in the λ points (x), where $p_x \in B_v$ in \sum .

Case 2: $(v \neq v', w = w')$. The given blocks meet now in the following points: (x), $x \in A$, where p_x is the intersection of the lines B_v and B_v ; the point (w); the n-1= $=\lambda-2$ points in which they meet in Γ (see proof of (2.4)). They meet therefore in λ points.

Case 3: $(v \neq v', w \neq w')$. The points in which the two blocks meet are now: the $n=\lambda-1$ points in which they meet in Γ ; the block (x), where p_x is the intersection of the lines B_v , $B_{v'}$ in Σ . This again makes a total of λ points.

Next consider the blocks [v, w], [z], where $z \in A$. A point $(x, y) \in [z]$ if an only if $p_x \in B_x$ in \sum . The point $(x, y) \in [v, w]$ if and only if $a(x-v) = y^{-1}w$. Now given $x \in A$, $x \neq v$, the latter equation may be solved uniquely for y.

Thus, if $p_z \notin B_v$ in Σ , then the λ elements x with $p_z \in B_x$ determine λ points $(x,y)\in[v,w]\cap[z]$; but if $p_z\in B_v$, then the $\lambda-1$ elements x $(\neq v)$ with $p_z\in B_x$ determine $\lambda-1$ such points and in this case point (z) is also in the intersection. Thus the two blocks meet in λ points.

The remainder of the proof that any two blocks meet in λ points is straightforward and is omitted.

It follows that Π is a symmetric design with the required parameters. It is easily checked that the subset $S = \{(x) | x \in A\}$ is a λ -set in Π .

It remains to prove that Π is self-dual. We shall exhibit the isomorphism from Π onto its dual design but omit the verification which is straightforward:

$$(x, y) \rightarrow [x, -y^{-1}], \quad (x) \rightarrow [x], \quad (y) \rightarrow [y^{-1}],$$

 $[v, w] \rightarrow (v, w^{-1}), \quad [x] \rightarrow (x), \quad [y] \rightarrow (-v^{-1}).$

Remark. It is easy to see that Π_S in (2.5) is just the sum of λ copies of Σ . We know of no examples of a Type II design Π with a λ -set S for which Π_S is not a sum of projective planes.

Type III: $u=\lambda+1$.

Here Π is a symmetric $2-(\lambda^3+2\lambda^2+2\lambda+2, \lambda^2+\lambda+1, \lambda)$ design with $s=\lambda^2$, $\alpha=2(\lambda+1)$, $\beta=\lambda^2(\lambda+1)$ and Π_S is a $2-(\lambda^2, \lambda, \lambda)$ design. Note that Π_S has the parameters of a sum of λ affine planes of order λ .

Applying the Bruck—Ryser—Chowla theorem (see, for example, [3] or [5]) it follows that if λ is even, then $k-\lambda=\lambda^2+1$ must be a square, which is impossible.

Hence λ must be odd. If $\lambda=1$, we have the projective plane of order 2 as a unique example of Π . In this case any set consisting of just one point is a λ -set.

More generally, for λ odd, the Bruck—Ryser—Chowla theorem asserts that if Π exists then the following equation has a non-trivial solution in integers:

(2.6)
$$x^2 = (\lambda^2 + 1)y^2 + \lambda(-1)^{\mu}z^2$$

where $\mu = \frac{1}{2}(\lambda + 1)$.

We know of no design with Type III parameters other than the projective plane of order 2. In such designs, we have observed that λ must be odd. By considering equation (2.6) modulo 8, we see that $\lambda \equiv \pm 1 \pmod{8}$ and hence infinitely many odd values of λ are excluded. However, if λ is a perfect square, say $\lambda = m^2$, then x=1, y=1, z=m is a non-trivial solution of (2.6) and so infinitely many values of λ are not excluded by (2.6). A solution of (2.6) with smallest $\lambda \neq 1$ is x=15, y=1, z=5 and $\lambda=7$.

References

- [1] E. F. Assmus and J. H. van Lint, Ovals in projective designs, J. Comb. Theory (A) 27, 307—324 (1979).
- [2] R. CALDERBANK and W. M. KANTOR, The geometry of two-weight codes, Bull. London Math. Soc. 18, 97—122 (1986).
- [3] P. Dembrowski, Finite Geometries, New York: Springer (1968).
- [4] G. L. EBERT, Partitioning projective geometries into caps, Can. J. Math. 37, 6, 1163—1175 (1985).
- [5] D. R. HUGHES, and F. C. PIPER: Design Theory. Cambridge University Press, Cambridge (1985).
- [6] R. C. Mullin, Resolvable designs and geometroids, Utilitas Mathematica 5, 137-149 (1974).

- [7] D. P. RAJKUNDLIA, Some techniques for constructing infinite families of BIBDs. Discrete Mathematics 44, 61—96 (1983).
- [8] S. S. Sane, S. S. Shrikhande and N. M. Singhi, Maximal arcs in designs, Graphs and Combinatorics 1, 97—106 (1985).
- [9] S. S. SHRIKHANDE and N. M. SINGHI, Construction of geometroids, *Utilitas Mathematica* 8, 187—192 (1975).

T. P. McDonough and V. C. Mavron

Department of Mathematics The University College of Wales Aberystwyth SY23 3BZ U.K.